3.1121 \(\int \frac{(e x)^{7/2} (c+d x^2)}{(a+b x^2)^{7/4}} \, dx\)

Optimal. Leaf size=192 \[ \frac{5 \sqrt{a} e^2 (e x)^{3/2} \left (\frac{a}{b x^2}+1\right )^{3/4} (2 b c-3 a d) \text{EllipticF}\left (\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right ),2\right )}{6 b^{5/2} \left (a+b x^2\right )^{3/4}}+\frac{5 e^3 \sqrt{e x} \sqrt [4]{a+b x^2} (2 b c-3 a d)}{6 b^3}-\frac{e (e x)^{5/2} \sqrt [4]{a+b x^2} (2 b c-3 a d)}{3 a b^2}+\frac{2 (e x)^{9/2} (b c-a d)}{3 a b e \left (a+b x^2\right )^{3/4}} \]

[Out]

(2*(b*c - a*d)*(e*x)^(9/2))/(3*a*b*e*(a + b*x^2)^(3/4)) + (5*(2*b*c - 3*a*d)*e^3*Sqrt[e*x]*(a + b*x^2)^(1/4))/
(6*b^3) - ((2*b*c - 3*a*d)*e*(e*x)^(5/2)*(a + b*x^2)^(1/4))/(3*a*b^2) + (5*Sqrt[a]*(2*b*c - 3*a*d)*e^2*(1 + a/
(b*x^2))^(3/4)*(e*x)^(3/2)*EllipticF[ArcCot[(Sqrt[b]*x)/Sqrt[a]]/2, 2])/(6*b^(5/2)*(a + b*x^2)^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.134827, antiderivative size = 192, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.269, Rules used = {457, 321, 329, 237, 335, 275, 231} \[ \frac{5 e^3 \sqrt{e x} \sqrt [4]{a+b x^2} (2 b c-3 a d)}{6 b^3}+\frac{5 \sqrt{a} e^2 (e x)^{3/2} \left (\frac{a}{b x^2}+1\right )^{3/4} (2 b c-3 a d) F\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )\right |2\right )}{6 b^{5/2} \left (a+b x^2\right )^{3/4}}-\frac{e (e x)^{5/2} \sqrt [4]{a+b x^2} (2 b c-3 a d)}{3 a b^2}+\frac{2 (e x)^{9/2} (b c-a d)}{3 a b e \left (a+b x^2\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[((e*x)^(7/2)*(c + d*x^2))/(a + b*x^2)^(7/4),x]

[Out]

(2*(b*c - a*d)*(e*x)^(9/2))/(3*a*b*e*(a + b*x^2)^(3/4)) + (5*(2*b*c - 3*a*d)*e^3*Sqrt[e*x]*(a + b*x^2)^(1/4))/
(6*b^3) - ((2*b*c - 3*a*d)*e*(e*x)^(5/2)*(a + b*x^2)^(1/4))/(3*a*b^2) + (5*Sqrt[a]*(2*b*c - 3*a*d)*e^2*(1 + a/
(b*x^2))^(3/4)*(e*x)^(3/2)*EllipticF[ArcCot[(Sqrt[b]*x)/Sqrt[a]]/2, 2])/(6*b^(5/2)*(a + b*x^2)^(3/4))

Rule 457

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d
)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*b*e*n*(p + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*b
*n*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] &
& LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] &&
 LeQ[-1, m, -(n*(p + 1))]))

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 237

Int[((a_) + (b_.)*(x_)^4)^(-3/4), x_Symbol] :> Dist[(x^3*(1 + a/(b*x^4))^(3/4))/(a + b*x^4)^(3/4), Int[1/(x^3*
(1 + a/(b*x^4))^(3/4)), x], x] /; FreeQ[{a, b}, x]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 231

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2*EllipticF[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(3/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{(e x)^{7/2} \left (c+d x^2\right )}{\left (a+b x^2\right )^{7/4}} \, dx &=\frac{2 (b c-a d) (e x)^{9/2}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac{\left (2 \left (-3 b c+\frac{9 a d}{2}\right )\right ) \int \frac{(e x)^{7/2}}{\left (a+b x^2\right )^{3/4}} \, dx}{3 a b}\\ &=\frac{2 (b c-a d) (e x)^{9/2}}{3 a b e \left (a+b x^2\right )^{3/4}}-\frac{(2 b c-3 a d) e (e x)^{5/2} \sqrt [4]{a+b x^2}}{3 a b^2}+\frac{\left (5 (2 b c-3 a d) e^2\right ) \int \frac{(e x)^{3/2}}{\left (a+b x^2\right )^{3/4}} \, dx}{6 b^2}\\ &=\frac{2 (b c-a d) (e x)^{9/2}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac{5 (2 b c-3 a d) e^3 \sqrt{e x} \sqrt [4]{a+b x^2}}{6 b^3}-\frac{(2 b c-3 a d) e (e x)^{5/2} \sqrt [4]{a+b x^2}}{3 a b^2}-\frac{\left (5 a (2 b c-3 a d) e^4\right ) \int \frac{1}{\sqrt{e x} \left (a+b x^2\right )^{3/4}} \, dx}{12 b^3}\\ &=\frac{2 (b c-a d) (e x)^{9/2}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac{5 (2 b c-3 a d) e^3 \sqrt{e x} \sqrt [4]{a+b x^2}}{6 b^3}-\frac{(2 b c-3 a d) e (e x)^{5/2} \sqrt [4]{a+b x^2}}{3 a b^2}-\frac{\left (5 a (2 b c-3 a d) e^3\right ) \operatorname{Subst}\left (\int \frac{1}{\left (a+\frac{b x^4}{e^2}\right )^{3/4}} \, dx,x,\sqrt{e x}\right )}{6 b^3}\\ &=\frac{2 (b c-a d) (e x)^{9/2}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac{5 (2 b c-3 a d) e^3 \sqrt{e x} \sqrt [4]{a+b x^2}}{6 b^3}-\frac{(2 b c-3 a d) e (e x)^{5/2} \sqrt [4]{a+b x^2}}{3 a b^2}-\frac{\left (5 a (2 b c-3 a d) e^3 \left (1+\frac{a}{b x^2}\right )^{3/4} (e x)^{3/2}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{a e^2}{b x^4}\right )^{3/4} x^3} \, dx,x,\sqrt{e x}\right )}{6 b^3 \left (a+b x^2\right )^{3/4}}\\ &=\frac{2 (b c-a d) (e x)^{9/2}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac{5 (2 b c-3 a d) e^3 \sqrt{e x} \sqrt [4]{a+b x^2}}{6 b^3}-\frac{(2 b c-3 a d) e (e x)^{5/2} \sqrt [4]{a+b x^2}}{3 a b^2}+\frac{\left (5 a (2 b c-3 a d) e^3 \left (1+\frac{a}{b x^2}\right )^{3/4} (e x)^{3/2}\right ) \operatorname{Subst}\left (\int \frac{x}{\left (1+\frac{a e^2 x^4}{b}\right )^{3/4}} \, dx,x,\frac{1}{\sqrt{e x}}\right )}{6 b^3 \left (a+b x^2\right )^{3/4}}\\ &=\frac{2 (b c-a d) (e x)^{9/2}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac{5 (2 b c-3 a d) e^3 \sqrt{e x} \sqrt [4]{a+b x^2}}{6 b^3}-\frac{(2 b c-3 a d) e (e x)^{5/2} \sqrt [4]{a+b x^2}}{3 a b^2}+\frac{\left (5 a (2 b c-3 a d) e^3 \left (1+\frac{a}{b x^2}\right )^{3/4} (e x)^{3/2}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{a e^2 x^2}{b}\right )^{3/4}} \, dx,x,\frac{1}{e x}\right )}{12 b^3 \left (a+b x^2\right )^{3/4}}\\ &=\frac{2 (b c-a d) (e x)^{9/2}}{3 a b e \left (a+b x^2\right )^{3/4}}+\frac{5 (2 b c-3 a d) e^3 \sqrt{e x} \sqrt [4]{a+b x^2}}{6 b^3}-\frac{(2 b c-3 a d) e (e x)^{5/2} \sqrt [4]{a+b x^2}}{3 a b^2}+\frac{5 \sqrt{a} (2 b c-3 a d) e^2 \left (1+\frac{a}{b x^2}\right )^{3/4} (e x)^{3/2} F\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )\right |2\right )}{6 b^{5/2} \left (a+b x^2\right )^{3/4}}\\ \end{align*}

Mathematica [C]  time = 0.138387, size = 110, normalized size = 0.57 \[ \frac{e^3 \sqrt{e x} \left (-15 a^2 d+5 a \left (\frac{b x^2}{a}+1\right )^{3/4} (3 a d-2 b c) \, _2F_1\left (\frac{1}{4},\frac{3}{4};\frac{5}{4};-\frac{b x^2}{a}\right )+a b \left (10 c-9 d x^2\right )+2 b^2 x^2 \left (3 c+d x^2\right )\right )}{6 b^3 \left (a+b x^2\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[((e*x)^(7/2)*(c + d*x^2))/(a + b*x^2)^(7/4),x]

[Out]

(e^3*Sqrt[e*x]*(-15*a^2*d + a*b*(10*c - 9*d*x^2) + 2*b^2*x^2*(3*c + d*x^2) + 5*a*(-2*b*c + 3*a*d)*(1 + (b*x^2)
/a)^(3/4)*Hypergeometric2F1[1/4, 3/4, 5/4, -((b*x^2)/a)]))/(6*b^3*(a + b*x^2)^(3/4))

________________________________________________________________________________________

Maple [F]  time = 0.049, size = 0, normalized size = 0. \begin{align*} \int{(d{x}^{2}+c) \left ( ex \right ) ^{{\frac{7}{2}}} \left ( b{x}^{2}+a \right ) ^{-{\frac{7}{4}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^(7/2)*(d*x^2+c)/(b*x^2+a)^(7/4),x)

[Out]

int((e*x)^(7/2)*(d*x^2+c)/(b*x^2+a)^(7/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x^{2} + c\right )} \left (e x\right )^{\frac{7}{2}}}{{\left (b x^{2} + a\right )}^{\frac{7}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(7/2)*(d*x^2+c)/(b*x^2+a)^(7/4),x, algorithm="maxima")

[Out]

integrate((d*x^2 + c)*(e*x)^(7/2)/(b*x^2 + a)^(7/4), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (d e^{3} x^{5} + c e^{3} x^{3}\right )}{\left (b x^{2} + a\right )}^{\frac{1}{4}} \sqrt{e x}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(7/2)*(d*x^2+c)/(b*x^2+a)^(7/4),x, algorithm="fricas")

[Out]

integral((d*e^3*x^5 + c*e^3*x^3)*(b*x^2 + a)^(1/4)*sqrt(e*x)/(b^2*x^4 + 2*a*b*x^2 + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**(7/2)*(d*x**2+c)/(b*x**2+a)**(7/4),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x^{2} + c\right )} \left (e x\right )^{\frac{7}{2}}}{{\left (b x^{2} + a\right )}^{\frac{7}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(7/2)*(d*x^2+c)/(b*x^2+a)^(7/4),x, algorithm="giac")

[Out]

integrate((d*x^2 + c)*(e*x)^(7/2)/(b*x^2 + a)^(7/4), x)